Answer:
I = 2172.46 A
Explanation:
Given that,
The length of a solenoid, l = 2.1 m
The inner radius of the solenoid, r = 28 cm = 0.28 m
The number of turns in the wire, N = 1000
The magnetic field in the solenoid, B = 1.3 T
We need to find the current carried by it. We know that, the magnetic field in a solenoid is given by :

Put all the values,

So, it carry current of 2172.46 A.
Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s
To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density