Sunday, July 20, marked 45 years since the United States put the first two astronauts safely on the moon. The cost for the Mercury, Gemini and Apollo programs was more than $25 billion at the time more like $110 billion in today’s world. The ensuing U.S. space efforts have cost an additional $196 billion for the shuttle and $50 billion for the space station. NASA’s total inflation-adjusted costs have been more than $900 billion since its creation in 1958 through 2014 (more than $16 billion per year). Looking back, have we gotten our money’s worth from the investment?
IamSugarBee
The answer is 24N. Since the body is moving with constant velocity all the forces must balance (equal & opposite)
Answer:
A. W = 6875.0 J.
B. W = -14264.6 J.
Explanation:
A. The work done by the rider can be calculated by using the following equation:

Where:
: is the force done by the rider = 25 N
d: is the distance = 275 m
θ: is the angle between the applied force and the distance
Since the applied force is in the same direction of the motion, the angle is zero.

Hence, the rider does a work of 6875.0 J on the bike.
B. The work done by the force of gravity on the bike is the following:
The force of gravity is given by the weight of the bike.
And the angle between the force of gravity and the direction of motion is 180°.
The minus sign is because the force of gravity is in the opposite direction to the motion direction.
Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.
I hope it helps you!
Hello!

Use the equation:

Where:
m = mass of the object (kg)
g = acceleration due to gravity (≈9.8 m/s)
h = height above ground (m)
Plug the given values into the equation:
PE = 7500 · 9.8 · 100
PE = 7,350,000 Joules.
P=IV, where P is power, I is resistance, and V is voltage. Plug in and solve:
P=400(20)
P=8000W
Hope this helps!!