A: makes work easier to do.
Answer:
<em>The motorboat ends up 7.41 meters to the west of the initial position
</em>
Explanation:
<u>Accelerated Motion
</u>
The accelerated motion describes a situation where an object changes its velocity over time. If the acceleration is constant, then these formulas apply:


The problem provides the conditions of the motorboat's motion. The initial velocity is 6.5 m/s west. The final velocity is 1.5 m/s west, and the acceleration is
to the east. Since all the movement takes place in one dimension, we can ignore the vectorial notation and work with the signs of the variables, according to a defined positive direction. We'll follow the rule that all the directional magnitudes are positive to the east and negative to the west. Rewriting the formulas:


Solving the first one for t

We have

Using these values

We now compute x


The motorboat ends up 7.41 meters to the west of the initial position
Answer:
The mass will be "8.86 lb".
Explanation:
The given values are:
Force
= 70,000 mi/h
Speed
= 7900 mi/h
On applying the Law of momentum, we get
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
When the spring is compressed, the potential energy stored in the spring is:

where k=880 N/m is the spring constant and

is the compression of the spring. By using these numbers, we get

When the spring is released with the ball over it, all the potential energy is converted into kinetic energy of the ball:

So by using m=0.300 kg, and re-arranging the formula, we can calculate the velocity of the ball:
The name of this landmas is known as <em>
</em>
Pangaea, was a supercontinent that existed during the late
Paleozoic and
early
Mesozoic eras. It formed approximately 300 million years ago and began to break apart after about 100 million years.
Theres an image of how this supercontinet looked