1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
6

A well-insulated, rigid tank has a volume of 1 m3and is initially evacuated. A valve is opened,and the surrounding air enters at

1 bar, 27 °C. Heat is transferredto the tank by an electric resister at a constant rate for 5 minutes. After heating, the tank pressure is 1 bar and the temperature is 477 °C. Air can be modeled as an ideal gas. Find the power input required, in kW
Engineering
1 answer:
DiKsa [7]3 years ago
3 0

Answer:

0.5 kW

Explanation:

The given parameters are;

Volume of tank = 1 m³

Pressure of air entering tank = 1 bar

Temperature of air = 27°C = 300.15 K

Temperature after heating  = 477 °C = 750.15 K

V₂ = 1 m³

P₁V₁/T₁ = P₂V₂/T₂

P₁ = P₂

V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

dQ = m \times c_p \times (T_2 -T_1)

For ideal gas, c_p = 5/2×R = 5/2*0.287 = 0.7175 kJ

PV = NKT

N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)

N = 9.66×10²⁴

Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles

The average mass of one mole of air = 28.8 g

Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg

∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ

The power input required = The rate of heat transfer = 149.211/(60*5)

The power input required = 0.49737 kW ≈ 0.5 kW.

You might be interested in
Differentiate between "Threshold and Resolution" with suitable examples.
9966 [12]

Answer:

to make the bace of a building more sturdy

Explanation:

example: the bace of the empire state building is stone very sturdy

6 0
2 years ago
What should be your strongest tool be for gulding your ethical decisions making process
valkas [14]

Answer:

Recognize that there is a moral dilemma.

Determine the actor. ...

Gather the relevant facts. ...

Test for right versus wrong issues. ...

Test for right versus right paradigms. ...

Apply the resolution principles. ...

Investigate the trilemma options. ...

Make the decision.

7 0
2 years ago
A 4-stroke Diesel engine with a displacement of Vd = 2.5x10^-3m^3 produces a mean effective pressure of 6.4 bar at the speed of
yKpoI14uk [10]

Answer:

The power developed by engine is 167.55 KW

Explanation:

Given that

V_d=2.5\times 10^{-3} m^3

Mean effective pressure = 6.4 bar

Speed = 2000 rpm

We know that power is the work done per second.

So

P=6.4\times 100\times 2.5\times 10^{-3}\times \dfrac{2\pi \times2000}{120}

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.

P=167.55 KW

So the power developed by engine is 167.55 KW

4 0
3 years ago
Chlorine is one of the important commodity chemicals for the global economy. Before the advent of large scale
artcher [175]

The composition of gas in the feed, the percentage conversion and the

theoretical yield are combined to give the product stream composition.

Response:

The composition of gas in the product stream are;

  • HCl: 0.4 kmol/h, Cl₂: 1.6 kmol/h, H₂O: 1.6 kmol/h, O₂: 0.5 kmol/h

<h3>How can percentage conversion give the contents of the product stream?</h3>

The amount of oxygen used = 30% exceeding the theoretical amount

Number of moles of hydrochloric acid = 4 kmol/h

Percentage conversion = 80%

Required:

The composition of the gas in the product feed.

Solution;

The given reaction is; 4HCl + O₂ \longrightarrow 2Cl₂ + 2H₂O

Percentage \ conversion = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{Moles \  of \ limiting \ reactant \ supplied \ in \ the \, feed}}

Which gives;

80 \% = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{4 \, kmol/h}}

Moles of limiting reactant reacted = 4 kmol/h × 0.80 = 3.6 kmol/h

Which gives;

Number of moles of HCl in the stream = 4 kmol/h - 3.6 kmol/h = 0.4 kmol/h

Number of moles of Cl₂ produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Similarly;

Number of moles of H₂O produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Number of moles of O₂ in the product stream = 30% × 1 kmol/h + 20% × 1 kmol/h = 0.5 kmol/h

The composition of the production stream is therefore;

  • <u>HCl: 0.4 kmol/h</u>
  • <u>Cl₂: 1.6 kmol/h</u>
  • <u>H₂O: 1.6 kmol/h</u>
  • <u>O₂: 0.5 kmol/h</u>

Learn more about theoretical and actual yield here:

brainly.com/question/14668990

brainly.com/question/82989

7 0
2 years ago
What kind of car is this
juin [17]

Answer:

camaro

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • To unload a bound stack of plywood from a truck, the driver first tilts the bed of the truck and then accelerates from rest. Kno
    7·1 answer
  • A rubber wheel on a steel rim spins freely on a horizontal axle that is suspended by a fixed pivot at point P. When the wheel sp
    11·1 answer
  • If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
    12·1 answer
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • Which of the following is an example of a reliable source?
    10·1 answer
  • Mobility refers to the ability to?
    12·1 answer
  • What are atomic bombs made out of <br> Just wondering
    10·1 answer
  • Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
    12·2 answers
  • (a) calculate the moment at point "c", where point "c" is the square 3'' below the centroid
    13·1 answer
  • Pipelines are a useful means of transporting oil because they: Multiple select question. are fast never fail to deliver are chea
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!