1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
7

A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th

e coefficient of road adhesion is 0.8. The car weighs 2700 lb, has a drag coefficient of 0.35, a frontal area of 18 ft2, and a coefficient of rolling friction approximated as 0.017 for all speed conditions. The car has an antilock braking system that gives it a braking efficiency of 100%. If the driver first applies the brakes 150 ft from the tree, how fast will the car be traveling when it reaches the tree? Include the effect of aerodynamic resistance.
Engineering
1 answer:
Dmitrij [34]3 years ago
8 0

Answer: V = 47.7 mi/hr

Explanation:

first we calculate elements of aero-dynamic resistance

Ka = p/2 * CD * A.f

p is the density of air(0.002378 slugs/ft^3) for zero altitude, CD is the drag coefficient(0.35) and A.f is the front region of the vehicle

so we substitute

Ka = 0.002378/2 * 0.35 * 18

Ka = 0.00749

Now we calculate the final speed of the vehicle (V2) using the relation;

S = (YbW/2gKa)In[ (UW + KaV1^2 + FriW ± Wsinθg) / (UW + KaV2^2 + FriW ± Wsinθg)

so

WE SUBSTITUTE

150 = (1.04 * 2700 / 2 * 32.2 * 0.0075) In [(0.8 * 2700 + 0.0075 *(78mil/hr * 5280ft/1min * 1hr/3600s)^2 + 0.017 * 2700 ± 2700 * 0.04) / (0.8 * 2700 + 0.0075 * V2^2 + 0.017 * 2700 ± 2700 * 0.04)]

150 = (2808/0.483) In [(2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

150 = 5813.66 In [ (2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

divide both sides by 5813.66

0.0258 = In [ (2412.06) / ( 0.0075V2^2 + 2313.9)]

take the e^ of both side

e^0.0258 = (2412.06) / ( 0.0075V2^2 + 2313.9)

1.0261 = (2412.06) / ( 0.0075V2^2 + 2313.9)]

(0.0075V2^2 + 2313.9) = 2412.06 / 1.0261

(0.0075V2^2 + 2313.9) = 2350.7

0.0075V2^2 = 2350.7 - 2313.9

0.0075V2^2 = 36.8

V2^2 = 36.8 / 0.0075

V2^2 = 4906.6666

V2 = √4906.6666

V2 = 70.0476 ft/s

converting to miles per hour

V2 = 70.0476 ft/s * 1 mil / 5280 ft * 3600s / 1hr

V = 47.7 mi/hr

You might be interested in
PLZZ HELP
9966 [12]

Answer:

Could ask a family member to help

Explanation:

5 0
3 years ago
Read 2 more answers
Name the seven physical qualities for which standards have been developed.
SIZIF [17.4K]

Answer:

HUMAN DEVELOPMENT

MOTOR BEHAVIOR

EXERCISE SCIENCE

MEASUREMENT AND EVALUATION

HISTORY AND PHILOSOPHY

UNIQUE ATTRIBUTES OF LEARNERS

CURRICULUM THEORY AND DEVELOPMENT

Explanation:

6 0
3 years ago
The total solids production rate in an activated sludge aeration tank is 7240 kg/d on a dry mass basis. It is necessary to maint
snow_lady [41]

Answer:

volume of biological sludge = 28.566 m³ per day

Explanation:

given data

mass of solid = 7240 kg/day

initial moisture content = 78%

solution

here percentage of solid will be

% of solid = 100 - initial moisture content

% of solid = 100 - 78 = 22 %

so that

mass of sludge produced = \frac{100}{100 - P} M kg  per day

put her value

mass of sludge produced = \frac{100}{100 - 78} 7240 kg

mass of sludge produced = 32909.09 kg

so

specific gravity of sludge =  \frac{\rho sludge}{\rho water }

and as we know that

\frac{100}{S sludge} = \frac{solid percentage}{S solid} = \frac{water percentage}{S water}

\frac{100}{S sludge} = \frac{22}{2.5} = \frac{78}{1}

S sludge = 1.152

so that

density of sludge = S sludge × density of water

density of sludge = 1.152 × 1000

density of sludge = 1152 kg/m³

so that

volume of biological sludge = \frac{mass sludge produce}{\rho sludge}

volume of biological sludge = \frac{32909.09}{1152}

volume of biological sludge = 28.566 m³ per day

6 0
3 years ago
A converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a te
Artyom0805 [142]

Explanation:

a converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures

100% (3 ratings)

A_2 = 0.001 m^2 P_1 = 1 MPa, T_1 = 360 k P_2 = 500 kpa p^gamma - 1/gamma proportional T (1000/500)^1.4 - 1/1.4 = (360/T_2) 2^4/14 = 360/T_2 T_2

3 0
2 years ago
A gas cylinder is connected to a manometer that contains water. The other end of the manometer is open to the atmosphere, which
horrorfan [7]

Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa

Explanation:

Given that;

patm = 79 kPa, h = 13 in of H₂O,

A sketch of the problem is uploaded along this answer.

Now

pA = patm + 13 in of H₂O ( h × density × g )

pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)

pA = 82.23596 kPa

the absolute static pressure in the gas cylinder is 82.23596 kPa

4 0
3 years ago
Other questions:
  • Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
    6·1 answer
  • Thermoplastics burn upon heating. a)-True b)- false?
    14·1 answer
  • An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle
    7·2 answers
  • In the High Low Logic Index low levels are bearish and high levels are bullish, generally True False
    13·1 answer
  • How does a motion sensor work?
    5·1 answer
  • What must engineers keep in mind so that their solutions will be appropriate?
    15·1 answer
  • Problem definition
    11·1 answer
  • Component of earthing and reasons why each material is being used<br><br>​
    5·1 answer
  • Technician A says that the starter solenoid switches the high current on and off. Technician B says that the solenoid on the sta
    5·1 answer
  • What is the difference between absorbed wavelengths and reflected wavelengths?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!