Answer:
electrons exist in specified energy levels
Explanation:
In its gold-foil scattering with alpha particles, Rutherford proved that the plum-pudding model of the atom theorised by Thomson was wrong.
From his experiment, Rutherford inferred that the atom actually consists of a very small nucleus, where all the positive charge is concentrated, and the rest of the atom is basically empty, with the electrons (negatively charged) orbiting around the nucleus at very large distance.
However, Rutherford did not specify anything about the orbits of the electrons. Later, Bohr predicted that the electrons actually orbit the nucleus in specific orbits, each orbit corresponding to a specific energy level. Bohr's model found confirmation in the observation of the emission spectrum lines: when an electron in one of the higher energy level jumps down into an orbit with lower energy, the atom emits a photon which has an energy exactly equal to the difference in energy between the two orbits (and this energy of the photon corresponds to a precise wavelength).
Answer:
L = 2.8 cm
Explanation:
Period T = 4 / 12 = 1/3 s
T = 2π√(L/g)
L = (T/2π)²g
L = ((1/3)/2π)²9.8 = 0.02758... ≈ 2.8 cm
The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.
-- Speeding up . . .
the back of the seat
friction between the car seat and the seat of your pants
-- Slowing down . . .
the seat belt
friction between the car seat and the seat of your pants
-- Turning away from a straight line . . .
the seat belt
friction between the car seat and the seat of your pants
the door, or whatever or whomever you're leaning against
Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
Answer:
the pressure per square inch is greater from the smaller feet.
Explanation:
different weight distribution