Answer:
the answer is b temperature
Answer:
a)1.37 s
b)∞ ( Infinite)
Explanation:
Given that
L= 47 cm ( 1 m =100 cm)
L= 0.47 m
a)
On the earth :
Acceleration due to gravity = g
We know that time period of the simple pendulum given as

Here

Now by putting the values

T=1.37 s
b)
Free falling elevator :
When elevator is falling freely then
( This is case of weightless motion)
Therefore

T=∞ (Infinite)
Answer:
A.
Explanation:
All the arrows align to the point right
Answer:
Chemical energy
Explanation:
The energy held in the foods molecules a lunch pack is composed of is chemical energy.
They occur within food substances which originates from plants and animals as giant organic molecules.
- Since food is often derived from plants and animals.
- Plants produce their own food by producing macromolecules from simple inorganic substances in the environment.
- Animals takes up these food and build their own body through it.
- Plants and animal parts constitutes organic molecules in which chemical energy is duly stored.
- When the molecules are broken down, they released their chemical potential energy into heat energy.
Answer:
is reflected back into the region of higher index
Explanation:
Total internal reflection is a phenomenon that occurs when all the light passing from a region of higher index of refraction to a region of lower index is reflected back into the region of higher index.
According to Snell's law, refraction of ligth is described by the equation

where
n1 is the refractive index of the first medium
n2 is the refractive index of the second medium
is the angle of incidence (in the first medium)
is the angle of refraction (in the second medium)
Let's now consider a situation in which

so light is moving from a medium with higher index to a medium with lower index. We can re-write the equation as

Where
is a number greater than 1. This means that above a certain value of the angle of incidence
, the term on the right can become greater than 1. So this would mean

But this is not possible (the sine cannot be larger than 1), so no refraction occurs in this case, and all the light is reflected back into the initial medium (total internal reflection). The value of the angle of incidence above which this phenomen occurs is called critical angle, and it is given by
