Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons
Answer:
Part a)

Part b)
Ball thrown downwards =
Ball thrown upwards =
Part c)

Explanation:
Part a)
Since both the balls are projected with same speed in opposite directions
So here the time difference is the time for which the ball projected upward will move up and come back at the same point of projection
Afterwards the motion will be same as the first ball which is projected downwards
so here the time difference is given as



Part b)
Since the displacement in y direction for two balls is same as well as the the initial speed is also same so final speed is also same for both the balls
so it is given as




Part c)
Relative speed of two balls is given as


now the distance between two balls in 0.8 s is given as



Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs