Answer:
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the mean of the Population = 95
Given that the standard deviation of the Population = 5
Let 'X' be the random variable in a normal distribution
Let X⁻ = 96.3
Given that the size 'n' = 84 monitors
<u><em>Step(ii):-</em></u>
<u><em>The Empirical rule</em></u>


Z = 2.383
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = P(Z≥2.383)
= 1- P( Z<2.383)
= 1-( 0.5 -+A(2.38))
= 0.5 - A(2.38)
= 0.5 -0.4913
= 0.0087
<u><em>Final answer:-</em></u>
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Answer:
The answer is A) x equals 3
Answer:
40
Step-by-step explanation:
20 ÷ 1/2 = 20 * 2 = 40 half liters in 20 liters
Answer:
720
Step-by-step explanation:
When you multiply 12 by 6, you get 72, and in this case, it will end up being 720 to correspond with the way it is set up.