1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
8

56+8 1/2 Does that make sense to you guys please help

Mathematics
1 answer:
Mademuasel [1]3 years ago
7 0
56 + 8 1/2 = 64 1/2

64   1/2 is your answer

hope this helps
You might be interested in
Find the indicated limit, if it exists.
kondor19780726 [428]

Answer:

d) The limit does not exist

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)
  • Left-Side Limit:                                                                                               \displaystyle  \lim_{x \to c^-} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Limit Property [Addition/Subtraction]:                                                                   \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Step-by-step explanation:

*Note:

In order for a limit to exist, the right-side and left-side limits must equal each other.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x,\ x < 5\\8,\ x = 5\\x + 3,\ x > 5\end{array}

<u>Step 2: Find Right-Side Limit</u>

  1. Substitute in function [Limit]:                                                                         \displaystyle  \lim_{x \to 5^+} 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle  \lim_{x \to 5^+} 5 - x = 5 - 5 = 0

<u>Step 3: Find Left-Side Limit</u>

  1. Substitute in function [Limit]:                                                                         \displaystyle  \lim_{x \to 5^-} x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle  \lim_{x \to 5^+} x + 3 = 5 + 3 = 8

∴ Since  \displaystyle \lim_{x \to 5^+} f(x) \neq \lim_{x \to 5^-} f(x)  , then  \displaystyle \lim_{x \to 5} f(x) = DNE

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits

5 0
2 years ago
(HELP I HAVE A TIMED QUIZ)
sertanlavr [38]

Answer:

7

Step-by-step explanation:

that answer isnt real do u know the answer yet

3 0
3 years ago
PLS help timed! which graph represents the solution of y&lt;x2-1 and x&gt;y2-3?​
miv72 [106K]

Answer:

y minus 3 = 2x plus 1

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Solve using the substitution method <br>16x – 4y = 16<br> 4x - 4 = y​
ArbitrLikvidat [17]

Answer:

y = 4 x − 4

Step-by-step explanation:

5 0
2 years ago
Area and perimeter for a square that is five feett long on each side
kirza4 [7]
Perimeter: 5 + 5 + 5 +5 = 20

area: 5 x 5 x 5 x 5 = 625
4 0
2 years ago
Read 2 more answers
Other questions:
  • Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
    11·1 answer
  • 12<br> What is the product?<br> x²_16/ -x² – 2x² + x/<br> 2x+8 x² + 3x-4
    14·1 answer
  • Jake has two similar cylindrical pipes. The radius of the first cylindrical pipe is 5 cm. The circumference of the second cylind
    15·1 answer
  • What's the slope and y-intercept of the equation 4x + 2y = 8?
    6·1 answer
  • Which amount is greater, 20 mm or 1 cm?
    14·1 answer
  • HELP! THIS IS DUE AT 10:40!!!!!!
    15·1 answer
  • Which property is illustrated?
    11·1 answer
  • Answer easy question quick ​
    6·2 answers
  • What is the value of this expression?
    9·1 answer
  • The image represents a rectangular patio that has a length equal to 4 feet more than the width. What is the perimeter of the pat
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!