S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m
Answer:
a. t = 1.43 s
b. d = 7.88 m
Explanation:
a. The time of flight can be found using the following equation:

Where:
: is the final height = -10 m
: is the initial height = 0
: is the initial speed in the vertical direction = 0
g: is the acceleration due to gravity = 9.81 m/s²
By solving the above equation for "t" we have:

Hence, the ball will hit the ground in 1.43 s.
b. The distance in the horizontal direction can be found as follows:

Where:
x₀: is the initial position in the horizontal direction = 0
a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

Therefore, the ball will travel 7.88 m before it hits the ground.
I hope it helps you!
Answer:
= 2.33
Explanation:
.According to snell's law:
n1sin i = n2sin r ,
where n1 is refractive index of the medium in which incident ray is travelling, n2 is the refractive index of the medium in which refracted ray is travelling,
i is angle of incidence,
r is angle of refraction.
Given that,
n1 = 1,
i = 51 degrees,
r = 19.5 degrees. ,
n2= ?
So,
1*sin 51 = n2 sin 19.5
=> n2 = sin51 / sin19.5
= 2.33
Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3