Answer:
D.vibrations that cause changes in air pressure
Explanation:
Sound is a type of wave.
A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.
Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.
Answer:
Explanation: El músculo esquelético está formado por fibras musculares, rodeadas de una capa de tejido conjuntivo, denominada endomisio. Las fibras se reúnen en fascículos primarios, que también están rodeados por otra capa de tejido conjuntivo, esta vez, más grueso, denominada perimisio.
Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
Answer:D.Refractive Indez
Explanation:
It is usually expressed the other way: the ratio of the speed of light in a vacuum to the speed of light in a medium. In that case, it is called the "index of refraction".
Michelaneglo DDDDDDDDDDDDDDDDDDDDDDDDD