Answer:
a)
, b)
, c) D. The magnitud of the change in the ball's momentum.
Explanation:
a) The magnitude of the change in the ball's momentum is:
![\Delta p = (0.275\,kg)\cdot \left[\left(1.63\,\frac{m}{s} \right)-\left(-3.28\,\frac{m}{s} \right)\right]](https://tex.z-dn.net/?f=%5CDelta%20p%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29-%5Cleft%28-3.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5Cright%5D)

b) The change in the magnitude of the ball's momentum:
![\Delta p' = (0.275\,kg)\cdot \left[(1.63\,\frac{m}{s} )-(3.28\,\frac{m}{s} ) \right]](https://tex.z-dn.net/?f=%5CDelta%20p%27%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29-%283.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%20%5Cright%5D)

c) The magnitude of the change in the ball's momentum is more directly related to the net force acting on the ball, as it measures the effect of the force on change in ball's motion at measured time according to the Impact Theorem. So, the right answer is option D.
Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .
An electron that is far away from the nucleus have higher energy than an electron near the nucleus. Nucleus are positively charged and those electrons near it get attracted; those electrons gain kinetic energy hence reducing their internal energy. The electrons far from nucleus have low kinetic energy hence more internal energy.
Answer:
0.657 seconds
Explanation:
speed of wave= wavelength / time period
so
time period= wavelength / speed
= 4.6/7
=0.657 sec
So, the average speed of the Cheetah is 17.6 m/s.
<h3>Introduction</h3>
Hello ! I'm Deva from Brainly Indonesia. This time, I will help regarding the average speed. The average speed is obtained from finding the average of the speeds that occur or can be detected from the division between distance and travel time. The average speed can be formulated by :

With the following condition :
= average speed (m/s)- s = shift or distance objects from initial movement (m)
- t = interval of the time (s)
<h3>Problem Solving</h3>
We know that :
- s = shift = 88 m
- t = interval of the time = 5 seconds
What was asked :
= average speed = ... m/s
Step by step :



So, the average speed of the Cheetah is 17.6 m/s.