plasma is a superheated liquid
So, a would-be the correct option.
Answer:
10250 N/C leftwards
Explanation:
QA = 4 micro Coulomb
QB = - 5 micro Coulomb
AP = 6 m
BP = 2 m
A is origin, B is at 4 m and P is at 6 m .
The electric field due to charge QA at P is EA rightwards

The electric field due to charge QB at P is EB leftwards

The resultant electric field at P due the charges is given by
E = EB - EA
E = 11250 - 1000 = 10250 N/C leftwards
Answer:
Given: mass 1200kg
initial velocity: 4m/s
finial velocity: 10 m/s
time 3 sec
then
speed; initial velocity + final velocity/2
4+10/3
: 4.66m/s2
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
But what are the choices??