Answer:

Explanation:
The relationship between the refractive index and the critical angle is given as follows:

where,
η = refractive index = 1.67
θc = critical angle =?
Therefore,


Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
<h3>What is acceleration?</h3>
Acceleration is the change in velocity over time.
A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.
a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Kinetic Energy = (1/2) (mass) (speed)
First runner: KE = (1/2) (45kg) (49 m/s) = 1,102.5 Joules
Second runner: KE = (1/2) (93kg) (9 m/s) = 418.5 Joules
The <em>first runner </em><em>has 163</em>% more kinetic energy than the second runner has.
As we move above up from one trophic level to another in
an energy pyramid, what happens to the energy?
a. It decreases from one trophic level to another.
b. It remains the same for each trophic level.
c. It increases from one trophic level to another.
As we move above up from one trophic level to another in
an energy pyramid, the energy level decreases from one trophic level to
another. The answer is letter A.