The correct answer to the question is D). Kinetic to electrical.
EXPLANATION:
Hydro electric power plants are the electricity generation plants which capture the energy of falling water to produce current.
The water present at the top of a dam has potential energy. When the water is allowed to fall from certain height, the potential energy of the water is converted into kinetic energy.
The falling water moving with high speed is allowed to fall on a turbine. The kinetic energy of the water will rotate the turbine. The turbine is attached to a generator which will produce electricity due to the electromagnetic induction.
Hence, we see that the kinetic energy of the water is converted into electric energy.
Answer:
The voltage across a semiconductor bar is 0.068 V.
Explanation:
Given that,
Current = 0.17 A
Electron concentration 
Electron mobility 
Length = 0.1 mm
Area = 500 μm²
We need to calculate the resistivity
Using formula of resistivity


Put the value into the formula


We need to calculate the resistance
Using formula of resistance



We need to calculate the voltage
Using formula of voltage

Put the value into the formula


Hence, The voltage across a semiconductor bar is 0.068 V.
Answer:
12
Explanation:
600/50 is 12 so the answer is twelve
Answer:
Range of wavelength will be
to 
Explanation:
We have given range of frequency is 400-560 Hz
Speed of the light 
We have to find the range of the wavelength of signal transmitted
Ween know that velocity is given by
, here
is wavelength and f is frequency
So for 400 Hz frequency wavelength will be 
And wavelength for frequency 560 Hz 
So range of wavelength will be
to 
The scientific revolution is a concept which explains how the developments of science (biology, chemistry, physics and etc.) changed the way we (society) think about nature. I hope this helps! :)