Assuming it is on a horizontal surface:
friction = μR
R = 20g (g is gravity 9.81)
so Friction = 0.085 x 20g
Work done is force x distance
so Work done = 0.085 x 20g x 28
= 466.956 J
Answer:
h f = Wf + K
where the total energy available is h f, Wf is the work function or the work needed to remove the electron and K is the kinetic energy of the removed electron
If K = zero then hf = Wf
Wf = h f = h c / λ or
λ = h c / Wf = 6.63E-34 * 3.0E8 / (3.7 * 1.6E-19)
λ = 6.63 * 3 / (3.7 * 1.6) E-7 = 3.36E-7
This would be 3360 angstroms or 336 millimicrons
Visible light = 400-700 millimicrons
374848282!,!( rnanxjcifjejzxj
Answer:
The announcement he had made promised to overturn our understanding of the Universe. If the data gathered by 160 scientists working on the project were correct, the unthinkable had been observed. Particles – in this case, neutrinos – had travelled faster than light.
Explanation: Plz Mark brainleist
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.