In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Energy is the ability to do work so I would say that thermal or heat energy is a type of work. Don’t know if this will work but that’s what I would put.
☁️ Answer ☁️
annyeonghaseyo!
Your answer is:
True.
Several simple machines change the direction of the applied force. These include lever, fulcrum and the pulley.
Hope it helps.
Have a nice day hyung/noona!~  ̄▽ ̄❤️
The equation that would allow us to calculate for the acceleration given the distance is written below,
a = (Vf² - Vo²) / 2d
where a is the acceleration, Vf is the final velocity, Vo is the initial velocity, and d is distance.
Substituting the known values,
a = ((84 ft/s)² - (72 ft/s)²) / 2(180 ft) = 5.2 ft/s²
Then, the equation that would relate the initial velocity, distance, acceleration and time is calculated through the equation,
d = Vot + 0.5at²
Substituting the known values,
180 = 72(t) + 0.5(5.2)(t²)
The value of t from the equation is 2.3 s
<em>ANSWER: 2.3 s</em>