Answer:
50 N
Explanation:
Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).
I hope this helps! :)
You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
Answer:
This is known as a Galilean transformation where
V' = V - U
Where the primed frame is the Earth frame and the unprimed frame is the frame moving with respect to the moving frame
V - speed of object in the unprimed frame
U - speed of primed frame with respect to the unprimed frame
Here we have:
V = -15 m/s speed of ball in the moving frame (the truck)
U = -20 m/s speed of primed (rest) frame with respect to moving frame
So V' = -15 - (-20) = 5 m/s
It may help if you draw a vector representing the moving frame and then add
a vector representing the speed of the ball in the moving frame.
In thermodynamics, work of a system at constant pressure conditions is equal to the product of the pressure and the change in volume. It is expressed as follows:
W = P(V2 - V1)
W = 1.3x10^5 (2x6 - 6 )
<span>W = 780000 J
</span>
Hope this answers the question. Have a nice day.
Answer:
Blood is a homogenous mixture