<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
Question four bulbs A,B,C and D are connected in a circuit shown in the figure below, the letters X, Y and Z represent three switches. Which switch is used to operate switch A separately?
Answer: x
The answer to your question is true.
Answer:
0m/s²
Explanation:
Given parameters:
Initial velocity of the boat = 8m/s
Final velocity = 8m/s
Time taken = 4s
Unknown:
Acceleration of the boat = ?
Solution:
Acceleration is the rate of change of velocity with time.
It is mathematically expressed as;
A =
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken
Insert the parameters and solve;
A =
= 0m/s²
If its not Distance traveled then its energy