The measure of angle A to the nearest tenth of a degree is - 19.5
X = (12/5,0)
y = (0,-4)
substitute 0 in for y & solve for x , to find the y-intercept substitute 0 in for x and then solve . ( I hope that makes sense)
Given J(1, 1), K(3, 1), L(3, -4), and M(1, -4) and that J'(-1, 5), K'(1, 5), L'(1, 0), and M'(-1, 0). What is the rule that tran
anastassius [24]
(x; y) -> (x - 2; y + 4)
J(1; 1) ⇒ J'(1 - 2; 1 + 4) = (-1; 5)
K(3; 1) ⇒ K'(3 - 2; 1 + 4) = (1; 5)
L(3;-4) ⇒ L'(3 - 2; -4 + 4) = (1; 0)
M(1;-4) ⇒ M'(1 - 2;-4 + 4) = (-1; 0)
Answer:
A
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (2, 1), thus
y = a(x - 2)² + 1
To find a substitute (1, 0) into the equation
0 = a(1 - 2)² + 1
0 = a + 1 ( subtract 1 from both sides )
a = - 1
Hence
y = - (x - 2)² + 1 or
y = 1 - (x - 2)² → A
<u>it</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>trinomial</u><u> </u><u>polynomi</u><u>al</u><u> </u><u>because</u><u> </u><u>it contains </u><u>3</u><u> </u><u>terms</u><u> </u><u>with</u><u> </u><u>fundamen</u><u>tal</u><u> </u><u>signs</u><u>.</u><u> </u>
<u>hope</u><u> </u><u>it</u><u> </u><u>helps</u><u> </u><u>you</u>