Answer:
r= 98.3 mm
Explanation:
For rim
R= 0.209 m
M= 4.32 kg
For rods
m= 7.37 kg
L= 2 R= 2 x 0.209 = 0.418 m
The Total moment of inertia of the wagon
I=MR²+2 x 1/12 m L²
Now by putting the values

I=0.413 kg.m²
For disk:
t= 0.0462 m
Density ρ = 5990 kg/m³
Lets take r is the radius of disk
So the mass of the disc
m'=ρ πr² t
The moment of inertia of disc
I'=1/2 m'r²
I'=1/2 x r² x ρ πr² t
Given that
I = I'
1/2 x r² x ρ πr² t = 0.413 kg.m²
1/2 x r³ x ρ π t = 0.413
r³ x ρ π t = 0.826

r³=0.00095
r=0.0983 m
r= 98.3 mm
<span>So we wan't to know what happens during nuclear fusion where we have 12 atoms. Nuclear fusion is a nuclear process where 2 or more nuclei will form 1 or more different nuclei with a release of energy. So if we start with 12 atoms, the most likely result will be 6 atoms. </span>
Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.
Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>