Can't really plot a graph here for question 1.
2a) The car speeds up from A to B. The car travels at a constant speed from B to C. The car slows down to a stop from C to D.
b) From the graph, at 10 seconds, the car is moving at 20 m/s.
<span>Lets call F the friction force which will act horizontally backwards.
As you are travelling at a constant velosity horizontally there is no overall resultant force in this direction.
ie. the force you pull with will be equal to the friction force resisting you. (you will initially have to have pulled with a greater force than the friction to get the suitcase moving)
the value of your force pulling is 60 cos26.9 (horizontally) - you should have learnt about resolving forces.
this must be equal to F
so
F=60cos26.9
F=53.5N
hope this helps you
please mark this as brainliest answer</span>
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
Answer:
Only the goalie is allowed inside the goal crease. The only exception when another player is allowed in the goal area is when they take off from outside the goal area, and shoots or passes the ball before landing. To avoid interference with other players, the player must then exit the goal area as soon as possible.
Explanation:
Crystalline solids must have a specific, orderly arrangement of atoms to be considered so.