Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :

where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant

Now put all the given values in this formula, we get

t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

Answer:
I don't know the ans please search on the Google you will get
And don't forget to mark me as brainlest please guys and follow me back please please please please please
And I will help you tooooooooooooooooo and follow u back if you follow me
I haven't got the answer but I'm probably sure that u can actually look up that answer hoped it help
Answer:

Explanation:
Hello,
In this case, since the acid is monoprotic, we can notice a 1:1 molar ratio between, therefore, for the titration at the equivalence point, we have:

Thus, solving for the moles of the acid, we obtain:

Then, by using the mass of the acid, we compute its molar mass:

Regards.