Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.
There are two main types of friction, static friction and kinetic friction. Static friction operates between
Let
denote the position vector of the ball hit by player A. Then this vector has components

where
is the magnitude of the acceleration due to gravity. Use the vertical component
to find the time at which ball A reaches the ground:

The horizontal position of the ball after 0.49 seconds is

So player B wants to apply a velocity such that the ball travels a distance of about 12 meters from where it is hit. The position vector
of the ball hit by player B has

Again, we solve for the time it takes the ball to reach the ground:

After this time, we expect a horizontal displacement of 12 meters, so that
satisfies

