1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
13

A point charge is at the origin. With this point charge as the source point, what is the unit vector r^ in the direction of (a)

the field point at x = 0 , y = -1.35m; (b) the field point at x = 12.0cm, y = 12.0cm; (c) the field point at x = - 1.10m, y = 2.60m? Express your results in terms of the unit vectors i^ and j^. You may want to review (Pages 695 - 699) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Electric-field vector for a point charge.
Physics
1 answer:
KiRa [710]3 years ago
3 0

Answer:

  • a. \hat{r} =- \hat{j}
  • b. \hat{r} = \ \frac{1}{\sqrt{2}} \ \hat{i} + \ \frac{1}{\sqrt{2}} \ \hat{j}
  • c. \hat{r} = \ -0.3871 \ \hat{i} + \ 0.91501\ \hat{j}

Explanation:

Using Coulomb's Law we know that the electric field E at point \vec{r} is:

\vec{E(\vec{r})} = k_e \frac{q}{d^2} \frac{\vec{r}-\vec{r'}}{d}

where  k_e is the Coulomb's Constant, q is the source charge, d is the distance between point and position of the source point charge, and \vec{r}' is the position of the source point charge.

Taking all this in consideration, the unit vector clearly is:

\hat{r} =\frac{\vec{r}-\vec{r'}}{d}

For our problem, \vec{r'} = (0,0), as the charge is located at the origin.

So

\hat{r} =\frac{\vec{r}}{d}

and d will be the magnitude of \vec{r}

Now, we can take the values for each point.

<h3>a.</h3>

\vec{r}= (0,-1.35 \ m)

and, the magnitude of the vector is

|\vec{r}| = \sqrt{r_x^2 + r_y^2}

|\vec{r}| = \sqrt{(0 \ m)^2 + (-1.35 \ m )^2}

|\vec{r}| =1.35 \ m

So, the unit vector is:

\hat{r} =\frac{(0,-1.35 \ m)}{1.35 \ m}

\hat{r} =(0,-1,0)

\hat{r} =- \hat{j}

<h3>b.</h3>

\vec{r}= (12 \ cm,12 \ cm)

and, the magnitude of the vector is

|\vec{r}| = \sqrt{r_x^2 + r_y^2}

|\vec{r}| = \sqrt{(12 \ cm)^2 + (12 \ cm )^2}

|\vec{r}| = \sqrt{2} \ 12 \ cm

So, the unit vector is:

\hat{r} =\frac{(12 \ cm,12 \ cm)}{\sqrt{2} \ 12 \ cm}

\hat{r} =(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)

\hat{r} = \ \frac{1}{\sqrt{2}} \ \hat{i} + \ \frac{1}{\sqrt{2}} \ \hat{j}

<h3>c.</h3>

\vec{r}= (-1.10 \ m, 2.60 \ m)

and, the magnitude of the vector is

|\vec{r}| = \sqrt{r_x^2 + r_y^2}

|\vec{r}| = \sqrt{(-1.10 \ m)^2 + (2.60 \ m)^2}

|\vec{r}| = 2.8415 \ m

So, the unit vector is:

\hat{r} =\frac{ (-1.10 \ m, 2.60 \ m)}{2.8415 \ m}

\hat{r} =(-0.3871 ,0.91501)

\hat{r} = \ -0.3871 \ \hat{i} + \ 0.91501\ \hat{j}

You might be interested in
What is the magnitude and direction (right or left) of the
Sunny_sXe [5.5K]

Answer: 12 N to the right

Explanation:

If we calculate the net force acting on the box, we will have:

<u>In y-component:</u>

Fy_{net}=F_{n}+F_{g} (1)

Where F_{n}=12 N is the Normal force, directed upwards and F_{g}=-12 N is the weight of the box (gravity force), directed downwards.

Fy_{net}=12 N-12 N (2)

Fy_{net}=0 N (3) Hence the net force in the vertical component is zero

<u>In x-component:</u>

Fx_{net}=F_{left}+F_{right} (4)

Where F_{left}=-3 N and F_{right}= 15 N

Fx_{net}=-3 N + 15 N (5)

Fx_{net}=12 N (6) This is the net force in the horizontal component

Therefore, the total net force acting on the box is 12 N directed to the right

5 0
3 years ago
How far can a person run in 15 minutes if he runs at an average speed of 16 km/hr?
anygoal [31]

Answer:

4km

Explanation:

15 minutes is 1/4 of an hour.

1/4 of 16 is 4.

3 0
3 years ago
What unit is used to measure the period of a wave?
mixer [17]

Answer:

D. Meters/Seconds

Explanation:

The time period of a wave is measured in seconds.

A typical wave involves both time and distance.  Consider a sound wave, which is basically a periodic modulation of the local air pressure.  We "hear" the sound because our ears respond to the variations of pressure.

The most common metric of a sound wave is frequency.  This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz".  The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.

4 0
3 years ago
Two children ride side-by-side on a carousel. Their paths are shown in the image below.
Sonbull [250]

Answer:

The child represented by a star on the outside path.

Explanation:

5 0
3 years ago
A neutral atom has no overall charge. Explain this in terms of its particles.
ruslelena [56]

Answer:

i just need points rn sorry

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the velocity of 360?
    14·1 answer
  • Which two ways can light be understood
    5·1 answer
  • What force causes a rolling ball to slow down and stop
    6·2 answers
  • How many miles is in 7 blocks?
    6·1 answer
  • A spring with spring constant 11.5 N/m hangs from the ceiling. A 490 g ball is attached to the spring and allowed to come to res
    7·1 answer
  • Potential energy is energy due to the:
    8·1 answer
  • A 438kg car is accelerating east at 2.55m/s^2. What is the total force acting east on the car
    8·1 answer
  • DO NOT ANSWER IF YOU DON'T KNOW
    8·1 answer
  • Which of the following best describes the difference between type a and type b
    9·1 answer
  • How long must a tow truck apply a force of 600 N to increase the speed of a 1,500 kg car at rest to 2 m/s?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!