<h2><u>Question</u><u>:</u><u>-</u></h2>
Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the work done by Ryan?
<h2><u>Answer:</u><u>-</u></h2>
<h3>Given,</h3>
=> Force applied by Ryan = 10N
=> Distance covered by the book after applying force = 30 cm
<h3>And,</h3>
30 cm = 0.3 m (distance)
<h3>So,</h3>
=> Work done = Force × Distance
=> 10 × 0.3
=> 3 Joules

Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
C is a non-metal and so is O. So the answer is CO
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
Answer: 1160 m
Explanation:
Speed = distance / time. Plug in 40 m/s for speed and 29 s for time in order to get the distance, 1160 m.