Answer:
air pressure increases and temperature decreases
Explanation:
Hope this helps
Answer:
The true weight of the aluminium is
4.5021 kg
Explanation:
Given data
= 4.5 kg
= 1.29 
= 2.7× 
The true mass of the aluminium is given by

Put all the values in above equation we get

4.5021 kg
Therefore the true weight of the aluminium is
4.5021 kg
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)