As we know that acceleration is directly proportional to force, therefore as the force is doubled, acceleration gets doubled too.
According to the Law of Conservation of Energy, energy is neither created nor destroyed. It is only transferred through different forms of energy. For the following situations, the conversion of energy is as follows:
*Turning on a space heater = electrical energy⇒heat energy
*Dropping an apple core into the garbage = potential energy⇒kinetic energy
*Climbing up a rope ladder = kinetic energy⇒potential energy
*Starting a car = chemical energy⇒mechanical energy
<span>*Turning on a flashlight = chemical energy</span>⇒electrical energy
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
There's the fan over the stove and in the microwave oven, the dispose-all under the sink, the blender, the washer, the dryer, vacuum cleaner, hair dryer, and there are many in a computer.
Hope this helps!
Answer:
Answer is A
Explanation:
As we know , for constant velocity we get a straight line.
The formula for this problem is s = vt which is similar to a straight line formula like y = mx + c.
If we put here c = 0 we get the formula for distance and velocity.
So the answer is A.