True. it’s at rest which means it’s not moving so there’s no acceleration
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>
<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Mainly because of the higher energy of blue light than red light.
In fact, light is made of photons, each one carrying an energy equal to

where h is the Planck constant while f is the frequency of the light.
The frequency of red light is approximately 450 THz, while the frequency of blue light is about 650 Hz. Higher frequency means higher energy, so blue light is more energetic than red light and therefore it can cause more damages than red light.
Answer:
<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg
k = 0.4
F = 200 N
<u>To </u><u>find </u><u>-</u><u> </u> acceleration
<u>Solution </u><u>-</u><u> </u>
F= kMA
200 = 0.4 * 20 * acceleration
200 = 8 * a
a = 8/200
a = 0.04 m s²
<h3>a = 0.04 m s²</h3>