Miles per second right?
Hope that helped
Answer:
The friction force and the x component for the weight should be the reaction forces that are opposite and equal to the action force, which causes the locomotive to move up the hill if the velocity of the locomotive remains constant.
Explanation:
<u>When the locomotive starts to pull the train up, appears two reaction forces opposed to the action force in the direction of the move. </u>
The first one is due to the friction between the wheels and the ground, it will be the friction force (Fr):
Fr = μ*Pₓ =μmg*sin(φ)
<em>where μ: friction dynamic coefficient, Pₓ: is the weight component in the x-axis, m: total mass = train's mass + locomotive's mass, g: gravity, and sin(φ): is the angle respect to the x-axis.</em>
And the second one is the x component for the weight (Wₓ):
Wₓ = mg*cos(φ)
<em>where cos(φ): is the angle respect to the y-axis. </em>
<em> </em>
These two forces should be the same as the action force, which causes the locomotive to move up the hill if the velocity of the locomotive remains constant.
Generators don't actually create electricity. Instead, they convert mechanical or chemical energy into electrical energy. They do this by capturing the power of motion and turning it into electrical energy by forcing electrons from the external source through an electrical circuit. hope it helps man
Answer:
Below
Explanation:
First, we need to convert the dimension from cm to m before plugging it into the equation:
32 / 100 = 0.32 m
10 / 100 = 0.1 m
You can use this equation to find the pressure exerted on the ground
Pressure = Force / Area
Plugging our values in.....
Pressure = 16 Newtons / (0.1)(0.32)
= 16 Newtons / 0.032
= 500 N/m^2
Hope this helps! Best of luck <3
It has more mass, yes. But it has less of a gravitational pull because it is farther away from the sun than the Earth is