It describes the point at which the element is a solid liquid and has at a certain temperature and pressure
Hi friend
--------------
Your answer
-------------------
Water = H2O
Number of molecules in one mole of water = 6.022 × 10²³ [Avogadro's constant]
Given number of molecules = 2.52 × 10²³
So,
------
Number of moles =

HOPE IT HELPS
Answer:
Explanation:
1. The reaction will proceed backward, shifting the equilibrium position to the left.
2. The reaction will proceed forward, shifting the equilibrium position to the right.
3. Either add more of the products ( H2O or Cl2) or remove the reactant (HCl or O2)
Answer:indirect causes of disease include genetics, lifestyle, and environmental factors
Explanation:
Answser:
3.77 mg of K-40 decayed into Ar-40.
Data:
1) K-40, Ca-40, Ar-40: all three have the same atomic mass
2) 90%<span> of the potassium-40 will decay into calcium-40
3) 10% of the potassium-40 will decay into argon-40.</span>
4) K-40 inside the rock = 0.81 mg
5) Ar-40 trapped = 0.377 mg
Soltuion:
1) 0.377 mg of Ar-40 is the 10% of the mass of the K-40 that decayed
=> x * 10% = 0.377 mg => x * 0.1 = 0.377mg
=> x = 0.377 mg / 0.1 = 3.77 mg
That means that 3.77 mg of K-40 decayed into Ar-40. And this is the answer to the question.
Additionaly, you can analyze the content of all K-40 and Ca-40, to understand better the case.
2) The mass of the K-40 that decayed into Ca-40 is 9 times (ratio 9:1) the amount that decayed into Ar-40 =>
mass of K-40 that decayed into Ca-40 = 9 * 0.377 = 3.393 mg
3) Total amount of K-40 that decayed = amount that decayed into Ar-40 + amount that decayed into Ca-40 = 0.377mg + 3.393mg = 3.77 mg
4) Original amount of K-40 = amount of K-40 that decayed + amount of K-40 present in the rock = 3.77mg + 0.81 mg = 4.58 mg
5) amount of K-40 that decayed into Ar-40 as percent
% = [3.77 mg / 4.58mg] * 100 = 82.31 %.