As we know that gravitational potential energy is given by

here we have
m = mass = 120 kg

h = height = 8.2 m
now from above formula


so above is the gravitational potential energy of the couch
Straight upward
the ball moves in the forward direction with your walking speed at all times. If you want the ball to land in your hand when it comes back down, you should toss the ball straight upward.
<h3>What is Projectile motion ?</h3>
Projectile motion is the motion of an object thrown (projected) into the air.
- After the initial force that launches the object, it only experiences the force of gravity. The object is called a projectile, and its path is called its trajectory
- A projectile can be a thrown ball, a bullet or a springboard diver ... Except for air resistance, the forward velocity of any projectile is constant and is equal to the initial velocity when it was released.
Learn more about Projectile motion here:
brainly.com/question/27116954
#SPJ4
Answer:
option (E) is correct.
Explanation:
Work done is defined as the product of force and the distance in the direction of force.
force, f = 100 N
Coefficient of friction, = 0.25
distance = 15 m
So, net force F = f - friction force
F = 100 - 0.25 x m g
Work = (100 - 0.25 mg) x d cosθ
For minimum work, the angle should be maximum.
So, the value of θ is 76°.
thus, option (E) is correct.
Answer:
Force = 3.333 Newton
Explanation:
Given the following data;
Change in momentum = 10 Kgm/s
Time = 3 seconds
To find the force acting on it;
In Physics, the change in momentum of a physical object is equal to the impulse experienced by the physical object.
Mathematically, it is given by the formula;
Force * time = mass * change in velocity
Impulse = force * time
Substituting into the formula, we have;
10 = force * 3
Force = 10/3
Force = 3.333 Newton
The total angular momentum of the system about point B is 
Angular momentum, also known as moment of momentum or rotational momentum, is the rotating counterpart of linear momentum.
A rigid object's angular momentum is defined as the product of its moment of inertia and its angular velocity. If there is no external torque on the object, it is analogous to linear momentum and is subject to the fundamental constraints of the conservation of angular momentum principle. The vector quantity angular momentum It is derived from the expression for a particle's angular momentum.
Given,
mass of ball 1 = m1
m₂ mass of ball 2=m2
v₁ is the velocity of ball=r₁ω₁
v₂ is the velocity of ball 2=r₂ω₂
The total angular momentum is given as;

Hence the total angular momentum will be 
To learn more about angular momentum refer here
brainly.com/question/29512279
#SPJ4