Answer:
6.24 x 10-3 M
Explanation:
Hello,
In this case, for the given dissociation, we have the following equilibrium expression in terms of the law of mass action:
![Ka=\frac{[H_3O^+][BrO^-]}{[HBrO]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BBrO%5E-%5D%7D%7B%5BHBrO%5D%7D)
Of course, water is excluded as it is liquid and the concentration of aqueous species should be considered only. In such a way, in terms of the change
, we rewrite the expression considering an ICE table and the initial concentration of HBrO that is 0.749 M:

Thus, we obtain a quadratic equation whose solution is:

Clearly, the solution is 0.00624 M as no negative concentrations are allowed, so the concentration of BrO⁻ is 6.24 x 10-3 M.
Best regards.
Answer: This is the hue of mercury if you're looking for it. Mercury reacts with sulphur to generate a crimson hue. In the past, they always used a thermometer.
Explanation: However, due of its toxicity, individuals have switched to using alcohol in glass thermometers, which work similarly to mercury thermometers.
hope this helped best of luck mate! :) if this helped make sure to mark me Brainliest!
It can only do that when one of the components of the mixture is a magnetic
material.
When you have that situation, you pass the magnet over the mixture ... shaking
the mixture if it's a dry mixture of powders or pieces ... and the magnetic part of
the mixture moves toward the magnet, while the nonmagnetic parts of the mixture
couldn't care less about the magnet and they just stay where they are.
The atomic number of an element is characteristic to that element. Atomic number is the number of protons of that element.
Mass number is the sum of protons and neutrons of the element.
since protons and neutrons have a mass of 1 unit each, they together make up the mass of the element.
atomic number - number of protons - 92
mass number - number of neutrons + protons = 234
number of neutrons = mass number - atomic number
neutrons = 234 - 92 = 142
answer is 142