I believe it is either A. or C. my guess is A.
Answer:
The answer would be this: an independent research organization test the product and record the results.
Answer:
1.25 gram of cesium-137 will remain.
Explanation:
Given data:
Half life of cesium-137 = 30 year
Mass of cesium-137 = 5.0 g
Mass remain after 60 years = ?
Solution:
Number of half lives passed = Time elapsed / half life
Number of half lives passed = 60 year / 30 year
Number of half lives passed = 2
At time zero = 5.0 g
At first half life = 5.0 g/2 = 2.5 g
At 2nd half life = 2.5 g/ 2 = 1.25 g
Thus. 1.25 gram of cesium-137 will remain.
Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
Answer: Option (E) is the correct answer.
Explanation:
When we move from top to bottom in a group then there occurs an increase in atomic size of the atoms due to increase in the number of electrons.
For example, in group 2A elements beryllium is the smallest in size whereas radium being at the bottom is the largest in size.
Also, atomic number of beryllium is 4 and atomic number of radium is 88.
Thus, we can conclude that out of the given options radium is the 2A element which has the largest atomic radius.