Answer: It showed that all atoms contain electrons.
Explanation:
- J.J. Thomson's experiments inside a cathode ray tube in the presence of an electric field showed that all atoms contain tiny negatively charged subatomic particles "electrons".
- Also, Thomson's plum pudding model of the atom had negatively-charged electrons embedded within a positively-charged "soup."
- Furthermore, Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny positively-charged nucleus.
- Then, Rutherford proposed the nuclear model of the atom based on these results.
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
Answer:
water, lead, and wood
Explanation:
All are correct on Edg 2020
Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti
⇒ Ti
ΔH°
(Ti
) = -804.2 kJ/mol
ΔH°
(Ti
) = -763.2 kJ/mol
Therefore,
ΔH°
= ΔH°
(Ti
) - ΔH°
(Ti
) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti
) = 221.9 J/(mol*K)
s°(Ti
) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti
) - s°(Ti
) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH°
/s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.
Answer:
i think it is A
Explanation:
because earthquakes can cause volcanoes