Answer:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O.
Explanation:
- This is an acid-base reaction which produces salt and water according to the balanced equation:
<em>2KOH + H₂SO₄ → K₂SO₄ + 2H₂O.</em>
<em></em>
it is clear that 2.0 moles of KOH react with 1.0 mole of H₂SO₄ to produce 1.0 mole of K₂SO₄ and 2.0 moles of H₂O
Answer:
A general instrument, which is used to determine the concentration of hydrogen ion within the aqueous solution is known as a pH meter. The meter helps in determining the alkalinity or acidity, which is articulated in the form of pH. It is also called a potentiometric pH meter as it helps in finding the variation in electrical potential between a reference electrode and a pH electrode. This electrical potential variation is associated with the pH of the solution.
The potentiometric pH meter comprises a pair of electrodes and a basic electronic amplifier, some may even comprise a combination electrode and some sort of display that demonstrates pH units. The potentiometric pH meter generally exhibits a reference electrode or a combination electrode, and a glass electrode. The probes or electrodes are administered within a solution whose pH values are needed to be determined.
(3) HF because HCl is an acid and it seperates easily into water. Flourine has the highest electronegativity so im guessing because it pulls the electrons the hardest that it has the strongest bonds.
Answer:
Mg S2 O3
Explanation:
.691 g of Mg is .284 mole
1.84 g of S is .5739 mole
1.365 g of O is .8531 mole you can see the ratio is ~ 1 :2 :3
Mg S2 O3
Answer:
a process that involves rearrangement of the molecular or ionic structure of a substance, as distinct from a change in physical form or a nuclear reaction