Answer:
B.) Oxygen is usually -2
Explanation:
Hydrogen is usually +1.
A pure group 1 element is not always +1.
A monoatomic ion can be a range of numbers. However, it must be a charge other than 0.
I’d say most likely air, oxygen, or carbon dioxide
<span>Gloria is writing the
chemical formula for a compound using its chemical name. She has just
identified the names of the elements in the compound. The tool that she will
need to use next is a textbook to learn the IUPAC naming of compounds or a
handbook of chemical compounds.</span>
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.