Answer:
4800
Explanation:
using my Cal ex to solve the question
calculation goes like this
2*300*8=4800
Answer:
The initial temperature of the metal is 84.149 °C.
Explanation:
The heat lost by the metal will be equivalent to the heat gain by the water.
- (msΔT)metal = (msΔT)water
-32.5 grams × 0.365 J/g°C × ΔT = 105.3 grams × 4.18 J/g °C × (17.3 -15.4)°C
-ΔT = 836.29/12.51 °C
-ΔT = 66.89 °C
-(T final - T initial) = 66.89 °C
T initial = 66.89 °C + T final
T initial = 66.89 °C + 17.3 °C
T initial = 84.149 °C.
In a food chain, energy is passed through one link to another. When a herbivore eats only a certain fraction of the energy, (which comes from the food) it becomes new body mass; the rest of the energy is lost as waste or used up by the herbivore in order to carry out its life processes (ex. movement, digestion, reproduction). It doesn’t necessarily threaten the plants survival, there’s also a benefit. When a animals poops out the fruit (defecate) in another area those seeds get carried to new places with the help of a dab of fertilizer and a little bit of moisture. They also help supply nutrients when they die and decompose.
Given that, an experiment to measure the enthalpy change for the reaction of aqueous copper(II) sulfate, CuSO4(aq) and zinc, Zn(s) was carried out in a coffee cup calorimeter; the heat of the reaction in the whole system is calculated to be 2218.34 kJ
Heat of reaction (i.e enthalpy of reaction) is the quantity of heat that is required to be added or removed when a chemical reaction is taken place in order to maintain all of the compounds present at the same temperature.
The formula used to calculate the heat of the reaction can be expressed as follows:
Q = mcΔT
where:
- Q = quantity of heat transfer
- m = mass
- c = specific heat of water = 4.18 kJ/g °C (constant)
- ΔT = change in temparature
From the information given:
- The initial temperature (T₁) = 25° C
- The final temperature (T₂) = 91.5° C
∴
The change in temperature i.e. ΔT = T₂ - T₁
ΔT = 91.5° C - 25° C
ΔT = 66.5° C
The number of moles of CuSO₄ = 1.00 mol/dm³ × 50.0 cm³
![\mathbf{= (1 \times \dfrac{50}{1000})\ moles}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%281%20%5Ctimes%20%5Cdfrac%7B50%7D%7B1000%7D%29%5C%20moles%7D)
= 0.05 moles
- Since the molar mass of CuSO₄ = 159.609 g/mol
Then;
Using the relation:
![\mathbf{number \ of \ moles = \dfrac{mass}{molar \ mass}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bnumber%20%5C%20of%20%5C%20moles%20%3D%20%5Cdfrac%7Bmass%7D%7Bmolar%20%5C%20mass%7D%7D%7D)
By crossing multiplying;
mass of CuSO₄ = number of moles of CuSO₄ × molar mass of CuSO₄
mass of CuSO₄ = 0.05 moles × 159.609 g/moles
mass of CuSO₄ = 7.9805 grams
∴
Using the formula from above:
Q = mcΔT
Q = 7.9805 g × 4.18 kJ/g °C × 66.5° C
Q = 2218.34 kJ
Therefore, we can conclude that the heat of the reaction is 2218.34 kJ
Learn more about the chemical reaction here:
brainly.com/question/20250226?referrer=searchResults