Answer: V=IR
Explanation: for a series circuit connected to a battery supply, the total emf across the circuit is given as
E = I(R + r) and by expanding, we have that E =IR + It
Where r is the internal resistance of the battery
I is the total current flowing in the circuit
R total load resistance in the circuit.
E is the total emf of the circuit.
The total emf is the sum of 2 separate voltages.
"IR" which is the terminal voltage and "Ir" which is the loss voltage.
The teenila voltage is the voltage flowing in the circuit based on the equivalent resistance of the circuit while the loss voltage is the wasted voltage based on the internal resistance of the battery source.
Answer:
Explanation:
a= 7.8i + 6.6j - 7.1k
b= -2.9 i+ 7.4 j+ 3.9k , and
c = 7.6i + 8.8j + 2.2k
r = a - b +c
=7.8i + 6.6j - 7.1k - ( -2.9i + 7.4j+ 3.9k )+ ( 7.6i + 8.8j + 2.2k)
= 7.8i + 6.6j - 7.1k +2.9i - 7.4j- 3.9k )+ 7.6i + 8.8j + 2.2k
= 18.3 i +18.3 j - k
the angle between r and the positive z axis.
cosθ = 18.3 / √18.3² +18.3² +1
the angle between r and the positive z axis.
= 18.3 / 25.75
cos θ= .71
45 degree
Answer:
a) 5.63 atm
Explanation:
We can use combined gas law
<em>The combined gas law</em> combines the three gas laws:
- Boyle's Law, (P₁V₁ =P₂V₂)
- Charles' Law (V₁/T₁ =V₂/T₂)
- Gay-Lussac's Law. (P₁/T₁ =P₂/T₂)
It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
P₁V₁/T₁ =P₂V₂/T₂
where P = Pressure, T = Absolute temperature, V = Volume occupied
The volume of the system remains constant,
So, P₁/T₁ =P₂/T₂
a) 
Answer:
F = 5291.25 N
Explanation:
F = Ma so 1245 times 4.25^2 ,, that equals 5291.25 N
Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.