1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
3 years ago
8

A type of star called a red dwarf gets its name because it is a relatively small star that appears redder than the Sun when view

ed through a telescope. Red dwarfs, therefore, _____ more red light than stars like the Sun. A. emit B. reflect C. absorb D. transmit
Physics
1 answer:
weeeeeb [17]3 years ago
5 0

Answer:

option (b) reflect

make me brainliest

You might be interested in
Explain the process that causes dew to form on blades of grass?
luda_lava [24]
<span>Heat is radiated, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.</span>
7 0
2 years ago
Read 2 more answers
In an experiment replicating Millikan’s oil drop experiment, a pair of parallel plates are placed 0.0200 m apart and the top pla
lianna [129]

Answer: See below

Explanation:

<u>Given:</u>

The potential between plates, V = 240 V

Distance between plates, d = 0.02 m

The mass of drop, m = 2x10^-11

Charge on electron, e = 1.6x10^-19

Part (a)

The free-body diagram is attached below

Part (b)

The electric field is given by,

E=\frac{V}{d}

On applying force balance, the force on oil drop is equal to the weight of the oil,

$$\begin{aligned}F_{E} &=m g \\q E &=m g \\q \frac{V}{d} &=m g \\q &=\frac{m g d}{V}\end{aligned}$$

Substituting the given values in the above equation,

\begin{aligned}&q=\frac{2 \times 10^{-11} \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times \frac{1 \mathrm{~N}}{1 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}^{2}} \times 0.02 \mathrm{~m}}{240 \mathrm{~V} \times \frac{1 \mathrm{~N} \cdot \mathrm{m} / \mathrm{C}}{1 \mathrm{~V}}} \\&q=1.63 \times 10^{-14} \mathrm{C}\end{aligned}

Therefore, the charge on the oil drop is 1.63x10^-14 C

Part (c)

There will be an excess of electrons on the oil drop.

The number of electrons on oil drop can be calculated as,

\begin{aligned}q &=n e \\1.63 \times 10^{-14} \mathrm{C} &=n \times 1.6 \times 10^{-19} \mathrm{C} \\n &=1.01 \times 10^{5}\end{aligned}

Therefore, the number of excess electrons is 1.01x10^5

3 0
1 year ago
Tarzan, in one tree, sights Jane in another tree
taurus [48]
Taking the distance of Tarzan from the ground before and after he makes the swing:

Ho (initial height) = L(1 - cos45) = 20 (1 - 0.707) = 5.86 meters
Hf (final height) = L(1 - cos30) = 20 (1 - 0.866<span>) = 2.68 meters
</span>
Difference in height = 5.86 - 2.68 = 3.18 meters

PE = KE
mgh = (1/2)mv^2

Solving for v:
v = sqrt (2*g*h)
v = sqrt (2*9.8*3.18)
v = 7.89 m/s

With Tarzan going that fast, it is likely that he will knock Jane off.
8 0
3 years ago
Read 2 more answers
The formula shown below is used to calculate the energy released when a specific quantity of fuel is burned. Calculate the energ
mafiozo [28]

Answer: 8400 J

Explanation:

The formula referenced in the question is:

Q=m. c. \Delta T  

Where:

Q  is the thermal energy

m=100g \frac{1 kg}{1000 g}=0.1 kg is the mass  of the water sample

c=4200 \frac{J}{kg\°C}  is the specific heat capacity of  water

\Delta T=20\°C  is the variation in temperature

Solving:

Q=(0.1 kg)(4200 \frac{J}{kg\°C})(20\°C)  

Q=8400 J  This is the thermal energy released

5 0
2 years ago
What fraction of 5 MeV α particles will be scattered through angles greater than 8.5° from a gold foil (Z = 79, density = 19.3 g
aalyn [17]

Answer:

f(8) = \pi (5.90x10^{28} atoms/m^3) *(10^{-8} m) (\frac{2*79*(1.6x10^{-19}C)^2}{8 \pi (8.85 x10^{-12} C^2/Nm^2)*(5x10^6 Nm) *1.6x10^{-19}C})* cot^2 (8/2)

And after do all the operations we got:

f(8) = 1.96 x10^{-4] atoms/m^2

And that would be the final answer for this case.

Explanation:

For this case we can use the fomrula for the fraction of incident particles scattered by an angle \theta, given by:

f(\theta) = \pi nt (\frac{Z_1 e Z_2 e}{8 \pi e_o K})^2 cos^2 (\theta/2)

Where:

Z_1 e represent the charge of the projectile (Z1=2)

Z_2 e is the target charge (z2=79)

K= 5x10^6 eV represent the kinetic energy of incident particle

n represent the density of target particles (we need to find it first)

t= 10^{-8] m represent the thicknss of the foil

The first step would be calculate the density of target particles with the following formula:

n =\frac{\rho N_A N_M}{M_g}

Where:

\rho = 19.3 g/m^3= 19300 Kg/m^3

N_A = 6.022 x10^{23} molecules/mol the Avogadro's number

N_M = 1 represent the atoms per molecule

M_g = 197 g/mol = 0.197 Kg/mol represent the molecular weigth

If we replace we got:

n = \frac{19300 kg/m^3 *6.022x10^{23} molecu/mol * 1 atom/mole}{0.197 Kg/mol}= 5.90 x106{28] atoms/m^3

Now we can calculate the fraction of 5 MeV alpha particles that would be scatteres with angle higher than 8 degrees in a piece of thickness t=10^{-8}m

And using the first formula we got:

f(8) = \pi (5.90x10^{28} atoms/m^3) *(10^{-8} m) (\frac{2*79*(1.6x10^{-19}C)^2}{8 \pi (8.85 x10^{-12} C^2/Nm^2)*(5x10^6 Nm) *1.6x10^{-19}C})* cot^2 (8/2)

And after do all the operations we got:

f(8) = 1.96 x10^{-4] atoms/m^2

And that would be the final answer for this case.

4 0
3 years ago
Other questions:
  • A thin rod of length 1.3 m and mass 250 g is suspended freely from one end. It is pulled to one side and then allowed to swing l
    13·1 answer
  • Two boys are standing on a bridge 10 m above a stream. One boy throws a rock horizontally with speed of 5.0 m/s at exactly the s
    8·1 answer
  • A net horizontal force of 2000 n is applied to an 800-kg car at rest. the car's speed after 5 s will be
    14·1 answer
  • A Each time he does one pushup, Jose, who has a mass of 89kg, raises his center of mass by 25 cm. He completes an impressive set
    9·1 answer
  • Why does the light from the touch reach upto only certain distance
    6·1 answer
  • To calculate the _____ of a moving object, divide the displacement by the time interval in which the displacement occurred.
    8·2 answers
  • A resistor and a capacitor are connected in series to an ideal battery of constant terminal voltage. At the moment contact is ma
    8·1 answer
  • How does a sound wave transfer energy to your ears ?
    13·2 answers
  • Initial velocity=3m/s, final velocity=5m/s, displacement=2m. Find the acceleration.
    5·2 answers
  • A spring is compressed so that it has 7.2 J of elastic potential energy. A 0.3 kg ball is placed on top of the spring. When the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!