I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance:
A. dependent variable
As the the independent variable (i.e. number of cats being sold) increases, the dependent variable (i.e. money made) will also increase. You can have 1,000,000 cats for sale and make no money, but you cannot make money without having sold some cats first.
Hope my weird example helped!
Answer:
D
Explanation:
by having different ethnic groups
Answer:

Explanation:
<u>Centripetal Acceleration</u>
It's the acceleration that an object has when traveling on a circular path to take into consideration the constant change of velocity it must have in order to keep going in the circular path.
Being v the tangent speed, and r the radius of curvature of the circle, then the centripetal acceleration is given by

We can compute the value of v by using the distance and the time taken to travel:


Now we calculate the centripetal acceleration

