Answer:
6.217 pounds
Explanation:
We are given;
- Density of body fats 0.94 g/mL
- Volume of fats removed = 3.0 L
We are required to determine the mass of fats removed in pounds.
We need to know that;
Density = Mass ÷ volume
1 L = 1000 mL, thus, volume is 3000 mL
Rearranging the formula;
Mass = Density × Volume
= 0.94 g/mL × 3000 mL
= 2,820 g
but, 1 pound = 453.592 g
Therefore;
Mass = 2,820 g ÷ 453.592 g per pound
= 6.217 pounds
Thus, the amount of fats removed is 6.217 pounds
The material which requires the most heat to raise its temperature from 10°C to 30°C is oil.
<h3>What is the formula to calculate absorbed heat?</h3>
The formula which we used to calculate the amount of involved heat in relation with specific heat is:
Q = mcΔT, where
- Q = absorbed heat
- m = mass
- c = specific heat
- ΔT = change in temperature
Among the given materials, specific heat of oil is highest than other materials so will require maximum absorbed heat.
Hence, oil requires the most heat.
To know more about specific heat, visit the below link:
brainly.com/question/6198647
#SPJ1
Answer:
1.784 g
Explanation:
The equation of the reaction is;
NaOH(aq) + KHC8H4O4(aq) --------> KNaC8H4O4(aq) + H2O(l)
Number of moles of NaOH reacted = 17.47/1000 * 0.5000 M
Number of moles of NaOH reacted =8.735 * 10^-3 moles
From the reaction equation;
1 mole of NaOH reacted with 1 mole of KHC8H4O4
Hence, 8.735 * 10^-3 moles of NaOH reacts with 8.735 * 10^-3 moles of KHP.
So,
Mass of KHP reacted = 8.735 * 10^-3 moles * 204.2 g/mol = 1.784 g
Answer:
Freezing point is -2.81°C
Explanation:
34g/342gmol^-1 = 0.0994mol
n = m/mr
Molarity= 0.994/ 0.66 = 1.51M
◇T = -i × m ×Kf
Where ◇T is freezing depression
i= Vant Hoff factor
m = molarity
Kf = freezing content = 1.
860kgmol^-1
◇T =-1 × 1.51 × 1.860 = - 2.81°C
Answer:
Molecular mass of Ba3(PO4)2 = 3 × 137.5 + 2 [31 + 4 × 16] = 602.5
Explanation:
hope this helps
plz mark brainliest