<span>Fasteners are double or triple threaded with the idea of durability. People look for durability in a fastener and if they receive one with triple threaded or double threaded they will feel more safe and at ease knowing it has extra strength added.</span>
Answer:
Explanation:
- For diagram refer the attachment.
It is given that five cells of 2V are connected in series, so total voltage of the battery:

Three resistor of 5
, 10
, 15
are connected in Series, so the net resistance:



According to ohm's law:


On substituting resultant voltage (V) as 10 V and resultant resistant, as 30
we get:


The electric current passing through the above circuit when the key is closed will be <u>0.33 A</u>
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
Answer:
F = K Q1 Q2 / R^2 where K = 9 * 10E9 (1 / 4 pi ∈0)
F = 9.00E9 * (4.6E-16)^2 / .01 = 1.90E-19 N
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume