1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
3 years ago
13

Luz, who is skydiving, is traveling at terminal velocity with her body parallel to the ground. She then changes her body positio

n to feet first toward the ground. What happens to her motion? She will continue to fall at the same terminal velocity because gravity has not changed. She will slow down because the air resistance will increase and be greater than gravity. She will speed up because air resistance will decrease and be less than gravity. She will begin to fall in free fall because she will have no air resistance acting on her.
Physics
1 answer:
Salsk061 [2.6K]3 years ago
7 0

Answer:

Option C - she will speed up because air resistance has reduced and be less than gravity

Explanation:

We are told that Luz is skydiving with terminal velocity and her body parallel to the ground. Now, at this point she will be experiencing a gravitational force acting downwards, and also air resistance as a result of the drag force on her body

Since the downward gravitational force on Luz is constant, she will fall with a net force of;

F_net = F_g - F_d

where;

F_net is the net force on Luz acting downwards

F_g is the gravitational force on Luz

F_d is the drag force on Luz

The drag force on her body is proportional to the surface area of attack.

We are now told that Luz changes her body position to feet first toward the ground. This means that the surface area of attack is reduced because the feet will consume less space than the frontal part of her body. Thus, the drag force will be lesser then before she changed her body position due to reduced air resistance on her body.

Now, from earlier, we saw that;

F_net = F_g - F_d

So, the lesser F_d is, the higher F_net becomes.

Thus, she will speed up because air resistance has reduced and be less than gravity.

You might be interested in
Class characteristics serve as corroboration for other, more subjective pieces of evidence in a courtroom (like witness testimon
Amiraneli [1.4K]

Answer: True

Explanation:

Class characteristics can be define as the features which are common to the group of objects. Like the make, model, label of the manufacturing company, design, shape and form. The individual characteristics can be define as the features which develop on the object or any other article with it's wear and use. Like tear, cuts, malformation and deposition of dust, dirt, and mud. The individual characteristic indicate towards the ownership of article or evidence to a particular person.

The class characteristics can only support the possibility of the evidence exactly alike that of the evidence found at the scene of crime. But the individual characteristics can directly link the evidence with the cause of crime. Hence, will be useful to prove that a crime has taken place in the court of law.

8 0
3 years ago
Read 2 more answers
Indicate on the chart whether you would classify each model as representing an element, compound, or mixture.
Ne4ueva [31]

Answer:

1 compound

2 mixture

3 elements

4 0
3 years ago
Read 2 more answers
When a cube is inscribed in a sphere of radius r, the length Lof a side of the cube is . If a positive point charge Qis placed a
Nana76 [90]

Answer:

  Ф_cube /Ф_sphere = 3 /π

Explanation:

The electrical flow is

      Ф = E A

where E is the electric field and A is the surface area

Let's shut down the electric field with Gauss's law

       Фi = ∫ E .dA = q_{int} / ε₀

the Gaussian surface is a sphere so its area is

        A = 4 π r²

the charge inside is

        q_{int} = Q

we substitute

       E 4π r² = Q /ε₀

       E = 1 / 4πε₀   Q / r²

To calculate the flow on the two surfaces

* Sphere

       Ф = E A

        Ф = 1 / 4πε₀  Q / r² (4π r²)

        Ф_sphere = Q /ε₀

* Cube

Let's find the side value of the cube inscribed inside the sphere.

In this case the radius of the sphere is half the diagonal of the cube

          r = d / 2

We look for the diagonal with the Pythagorean theorem

         d² = L² + L² = 2 L²

         d = √2 L

         

we substitute

          r = √2 / 2 L

          r = L / √2

          L = √2  r

now we can calculate the area of ​​the cube that has 6 faces

          A = 6 L²

          A = 6 (√2  r)²

          A = 12 r²

the flow is

          Ф = E A

          Ф = 1 / 4πε₀  Q/r²  (12r²)

          Ф_cubo = 3 /πε₀  Q

the relationship of these two flows is

         Ф_cube /Ф_sphere = 3 /π

8 0
3 years ago
The y-position of a damped oscillator as a function of time is shown in the figure.
NISA [10]

(1) The period of the oscillator is 1 second.

(2) The damping coefficient is 0.93.

<h3>What is period of oscillation?</h3>

The period of oscillation is the time taken to make one complete cycle.

From the graph, the time taken to make one complete oscillation is 1 second.

<h3>Damping coefficient</h3>

equation of the wave is given as;

y(t) = Ae^(-btx) cos(ωt)

<h3>at time, t = 0, y = 3.5</h3>

3.5 = Ae^(-0) cos(0)

3.5 = A x 1

A = 3.5 cm

<h3>at time, t = 1 cm, y = - 3cm</h3>

-3 = 3.5e^(-bx) cos(ω)

-3/3.5 = e^(-bx) cos(ω)

-0.857 = e^(-bx) cos(ω)

-0.857 / cos(ω) =  e^(-bx)

ln[-0.857 / cos(ω)] = -bx  

ln[-0.857 / cos(ω)] / b = - x  ---- (1)

<h3>at time, t = 2 cm, y = - 2cm</h3>

-2 = 3.5e^(-2bx) cos(2ω)

-0.57 = e^(-2bx) cos(2ω)

ln[-0.57 / cos(2ω)] = -2bx  

ln[-0.57 / cos(2ω)] /2b = - x  ------(2)

solve (1) and (2)

ln[-0.57 / cos(2ω)]/2b = ln[-0.857 / cos(ω)] /b

-0.57 / cos(ω) = 2(-0.857 / cos(ω))

2(-0.857/cosω) = -0.57/cos2ω

-(2 x 0.857) / (-0.57) = cosω/cos 2ω

3 = cosω/cos 2ω

3(cos 2ω) =  cosω

3(2cos²ω - 1) = cos ω

6cos²ω - 6 = cosω

6cos²ω  - cosω - 6 = 0

let cosω  = y

6y² - y - 6 = 0

solve the quadratic equation;

y = 1.1 or -0.92

cosω = -0.92

ω  = arc cos(-0.92)

ω  = 2.74 rad/s

From equation (1)

ln[-0.857 / cos(ω)] / x = -b  ---- (1)

let x = 1

ln(-0.857/cos(2.74) = -b

-0.93 = -b

b = 0.93

Thus, the damping coefficient is 0.93.

Learn more about damping coefficient here: brainly.com/question/14058210

#SPJ1

4 0
2 years ago
The Venn diagram compares protons with neutrons. Which shared property belongs in the region marked "B"?
telo118 [61]

is there any choices?

4 0
3 years ago
Read 2 more answers
Other questions:
  • Does mars has a bulge near its equator ?
    12·1 answer
  • A silver bar of length 30 cm and cross-sectional area 1.0 cm2 is used to transfer heat from a 100°C reservoir to a 0°C block of
    11·1 answer
  • What can you say about the impedance of a series RLC circuit at the resonant frequency? The impedance of a series RLC circuit is
    10·2 answers
  • What is the mechanical advantage of a single pulley
    5·2 answers
  • Which of the following statements best describes earths mineral resources
    9·2 answers
  • As the shuttle bus comes to a sudden stop to avoid hitting a dog, it accelerates uniformly and at -4.1m/s^2 as it slows from 9.0
    7·1 answer
  • The angular speed of the hour hand of a clock, in rad/min, is:___________
    5·1 answer
  • A volcano erupts spewing ash into the air and sending lava flowing down the side of the mountain. Looking at the image explain h
    6·1 answer
  • Sunlight above the Earth's atmosphere has an intensity of 1.36 kW/m2. If this is reflected straight back from a mirror that has
    5·1 answer
  • A karate master strikes a board with an initial velocity of 10.0 m/s, decreasing to 1.0 m/s as his hand passes through the board
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!