Answer:moles = no. of molecules / Avogadro's number
= 2.26 x 10^33 / 6.022 x 10^23
= 3752906011
Round to significant figures which is 3 = 3.75 x 10^9 mol
Explanation:
The formula for finding how many moles of a substance when given the amount of molecules is: moles = number of molecules / Avogadro's number
Answer:
The empirical formula is N2 CH4 O
Explanation:
Answer:
c = 0.377 J/g.°C
c = 0.2350 J/g.°C
J = 27.3 J
Explanation:
We can calculate the heat (Q) absorbed or released by a substance using the following expression.
Q = c × m × ΔT
where,
c: specific heat
m: mass
ΔT: change in the temperature
<em>It takes 49.0J to raise the temperature of an 11.5g piece of unknown metal from 13.0°C to 24.3°C. What is the specific heat for the metal? Express your answer numerically, in J/g.°C</em>
Q = c × m × ΔT
49.0 J = c × 11.5 g × (24.3°C - 13.0°C)
c = 0.377 J/g.°C
<em>The molar heat capacity of silver is 25.35 J/mol.°C. How much energy would it take to raise the temperature of 11.5g of silver by 10.1°C? Express your answer numerically, in Joules. What is the specific heat of silver?</em>
<em />
The molar mass of silver is 107.87 g/mol. The specific heat of silver is:

Q = c × m × ΔT
Q = (0.2350 J/g.°C) × 11.5 g × 10.1°C = 27.3 J
Answer: Sunlight passes through the atmosphere and warms the Earth's surface. ... As more greenhouse gases are emitted into the atmosphere, heat that would normally be radiated into space is trapped within the Earth's atmosphere, causing the Earth's temperature to increase.
Explanation: This keeps well life on earth so the answer is (3)
:)
Answer:
Latent heat of fusion of the substance is 
Explanation:
Latent heat of fusion denotes amount of energy (heat) per unit mass required to melt a solid material at constant temperature and pressure i.e. at it's melting point
Here amount of heat required = 
Mass of unknown substance being melted = 18.5 kg
So, latent heat of fusion of the substance = (required heat energy to melt)/(mass of the unknown substance) = 
So, latent heat of fusion of the substance is 