Chlorine is one of the most effective and economical germ-killers against a wide array of life-threatening infections, viruses and bacteria, such as HIV, salmonella, E. Coli, and campylobacter.
Answer:
The answer to your question is: Al, Si have the greatest and S, C have the smallest.
Explanation:
Atomic radius increases from right to left in the periodic table.
Atomic radius increases from the upper section to the lower section of the periodic table.
Order of the atomic radius from highest to lowest.
Al, Si, S and C
Answer:You can set up stoichiemetry using the following equation:
(15.6 g MgF2) x (38g F / 62g MgF2) x (6.022x10^23 / 19gF)
= 3.03 x 10^23 molecules of F
or 1.52 x 10^23 molecules of F2
The number of molecules of magnesium fluoride in 15.6 g of MgF2 has to be found.
The molecular mass of MgF2 is 62.3018. 15.6 g of MgF2 is equivalent to 15.6/62.3018 mole of MgF2.
One mole of a gas has 6.02214179*10^23 particles.
15.6/62.3018 mole of MgF2 has (15.6/62.3018)*6.02214179*10^23 molecules of the compound.
(15.6/62.3018)*6.02214179*10^23
=> 1.5079*20^23
If this is rounded to one decimal figure the result is 1.51*10^23.
The number of molecules of MgF2 in 15.6 g of the gas is 1.51*10^23.
In order to find the molarity of the solution, we first require the moles of acetic acid added. For this,we need the mass which is:
Mass = volume * density
Mass = 50 * 1.05
Mass = 52.5 grams
Moles = mass / molecular weight
Moles = 52.5 / 60.05
Moles = 0.874 mol
Next, we know that the molarity of a solution is:
Molarity = moles / liter
Molarity = 0.874 / 0.5
Molarity = 1.75 M