Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu
2H₂₍g₎ + O₂ ₍g₎→ 2H₂O
138 mol H₂ × (2 mol H₂O ÷ 2 mol H₂)= 138 mol H₂O
64 mol O₂ × (2 mol H₂O ÷ 1 mol O₂)= 128 mol H₂O
128 mol H₂O
Answer:
0.085 moles of N₂O₅ are needed
Explanation:
Given data:
Mass of NO₂ produces = 7.90 g
Moles of N₂O₅ needed = ?
Solution:
2N₂O₅ → 4NO₂ + O₂
Number of moles of NO₂ produced :
Number of moles = mass/ molar mass
Number of moles = 7.90 g/ 46 g/mol
Number of moles = 0.17 mol
now we will compare the moles of NO₂ with N₂O₅.
NO₂ : N₂O₅
4 : 2
0.17 : 2/4×0.17 = 0.085 mol
Thus, 0.085 moles of N₂O₅ are needed.
Answer:
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Step-by-step explanation:
Molecular Equation:
(NH₄)₂S(aq) + FeCl₂(aq) ⟶ 2NH₄Cl(aq) + FeS(s)
Ionic equation
:
2NH₄⁺(aq) + S²⁻(aq) + Fe²⁺(aq) + 2Cl⁻(aq) ⟶ 2NH₄⁺(aq) + 2Cl⁻(aq) + FeS(s)
Net ionic equation
:
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2NH₄⁺(aq)</u> + S²⁻(aq) + Fe²⁺(aq) + <u>2Cl⁻(aq)</u> ⟶ <u>2NH₄⁺(aq) </u>+ 2<u>Cl⁻(aq) </u>+ FeS(s)
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Answer:
mettaliods
Explanation:
It has the both property of metal and non metal so it is called mettaliod.