Answer:
Your coefficients (the numbers in front of the molecule) will be the following from left to right.
1. <u>1 - 2 - 1 - 2</u>
2. <u>2 - 1 - 2 - 2 - 1</u>
3. <u>2 - 4 - 1</u>
4. <u>2 - 4 - 3</u>
5. <u>2 - 2 - 2 - 1</u>
6. <u>1 - 1 - 1</u>
7. <u>2 - 1 - 2</u>
8. <u>3 - 1 - 2 - 3</u>
9. <u>3 - 1 - 2 - 3</u>
10. <u>2 - 1 - 1 - 1</u>
Explanation:
To balance this equations first count how many times an element is on each side and then see what needs to be changed in order to balance them.
Answer:
The correct answer is -1085 KJ/mol
Explanation:
To calculate the formation enthalphy of a compound by knowing its lattice energy, you have to draw the Born-Haber cycle step by step until you obtain each element in its gaseous ions. Find attached the correspondent Born-Haber cycle.
In the cycle, Mg(s) is sublimated (ΔHsub= 150 KJ/mol) to Mg(g) and then atoms are ionizated twice (first ionization: ΔH1PI= 735 KJ/mol, second ionization= 1445 KJ/mol) to give the magnesium ions in gaseous state.
By other hand, the covalent bonds in F₂(g) are broken into 2 F(g) (Edis= 154 KJ/mol) and then they are ionizated to give the fluor ions in gaseous state 2 F⁻(g) (2 x ΔHafinity=-328 KJ/mol). The ions together form the solid by lattice energy (ΔElat=-2913 KJ/mol).
The formation enthalphy of MgF₂ is:
ΔHºf= ΔHsub + Edis + ΔH1PI + ΔH2PI + (2 x ΔHaffinity) + ΔElat
ΔHºf= 150 KJ/mol + 154 KJ/mol + 735 KJ/mol + 1445 KJ/mol + (2 x (-328 KJ/mol) + (-2913 KJ/mol).
ΔHºf= -1085 KJ/mol
Answer: 92 kg
Explanation:
because the rest of them are increasing weight or not changing at all and if you were to go to the moon you would weigh less
Answer:
Naphthalene has C2-rotational axis passing through the C9-C10 bond. It has two C2-axes perpendicular to the principal C2-rotational axis (one is passing through the mid-point of the C9-C10 bond another passing through the midpoints of C2-C3, C9-C10, C6-C7 bonds).
Explanation:
Most of the positively charged particles bounced back at a range of angles as they collided with the atoms in the foil; only a few passed straight through the foil. Therefore, scientists discovered<span> that every atom contains a nucleus where its positive charge and most of its mass are concentrated.</span>