The expected outcome would be A. The reaction will speed up after adding a catalyst to a chemical reaction.
The atomic mass of the element would simply be equal to
the sum of the weighted average of each isotope, that is:
atomic mass = 59.015 amu * 0.717 + 62.011 amu * (1 – 0.717)
<span>atomic mass = 59.863 amu</span>
Answer:
pH of buffer =4.75
Explanation:
The pH of buffer solution is calculated using Henderson Hassalbalch's equation:
![pH=pKa+log[\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5B%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa = 3.75
concentration of acid = concentration of formic acid = 1 M
concentration of salt = concentration of sodium formate = 10 M
![pH=3.75+log[\frac{10}{1}]=3.75+1=4.75](https://tex.z-dn.net/?f=pH%3D3.75%2Blog%5B%5Cfrac%7B10%7D%7B1%7D%5D%3D3.75%2B1%3D4.75)
pH of buffer =4.75
The atomic number of Fluorine is 9
Valence (outer) electron configuration is : 2s²2p⁵
Therefore, it requires 1 electron in the p-orbital to complete its octet of 8 electrons.
Thus, the atom Fluorine generally will become <u>more </u>stable through the formation of an ionic chemical compound by accepting <u>1 </u> electron from another atom. This process will fill its outer energy level.
Ans: A) more, 1