1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Whitepunk [10]
3 years ago
12

What caused day and night on a planet

Physics
1 answer:
Volgvan3 years ago
7 0

Answer:

The rotation of a planet around it's sun

You might be interested in
Why is friction like applied force but different from gravity?
kirill115 [55]

Answer:

Friction is when a force is applied or done by weight dragging onto something.

Explanation:

Gravity is when an object is getting pulled toward the center of what is attracting it. And applied force is when someone/sommething is applying force.

3 0
3 years ago
Read 2 more answers
Ultrasonic images are obtained from the inside organs of our body. This process uses which property of sound wave?
Temka [501]

This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.

The process of ultrasonic images uses the "echo" property of the sound waves.

Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.

Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.

Learn more about echo here:

brainly.com/question/14335186?referrer=searchResults

The attached picture shows the process of ultrasonic imaging.

4 0
2 years ago
Temperature and pressure of a region upstream of a shockwave are 295 K and 1.01* 109 N/m². Just downstream the shockwave, the te
seraphim [82]

Answer:

change in internal energy 3.62*10^5 J kg^{-1}

change in enthalapy  5.07*10^5 J kg^{-1}

change in entropy 382.79 J kg^{-1} K^{-1}

Explanation:

adiabatic constant \gamma =1.4

specific heat is given as =\frac{\gamma R}{\gamma -1}

gas constant =287 J⋅kg−1⋅K−1

Cp = \frac{1.4*287}{1.4-1} = 1004.5 Jkg^{-1} k^{-1}

specific heat at constant volume

Cv = \frac{R}{\gamma -1} = \frac{287}{1.4-1} = 717.5 Jkg^{-1} k^{-1}

change in internal energy = Cv(T_2 -T_1)

                            \Delta U = 717.5 (800-295)  = 3.62*10^5 J kg^{-1}

change in enthalapy \Delta H = Cp(T_2 -T_1)

                                 \Delta H = 1004.5*(800-295) = 5.07*10^5 J kg^{-1}

change in entropy

\Delta S =Cp ln(\frac{T_2}{T_1}) -R*ln(\frac{P_2}{P_1})

\Delta S =1004.5 ln(\frac{800}{295}) -287*ln(\frac{8.74*10^5}{1.01*10^5})

\Delta S = 382.79 J kg^{-1} K^{-1}

7 0
2 years ago
On a smooth horizontal floor, an object slides into a spring which is attached to another mass that is initially stationary. Whe
HACTEHA [7]

Answer:

E) momentum and mechanical energy

Explanation:

In the context, an object is attached to the another mass with a spring which is initially at a rest position. Now when the spring is compressed, the two masses moves with the same speed. Now since the both the masses combines with the spring to move together they are considered as one system and in this case the momentum and the kinetic energy will be conserved.

The kinetic energy and momentum of the system after collision and the kinetic energy and momentum of the two masses before collision will be constant.

3 0
3 years ago
A student attempted to measure the specific latent heat of vaporisation of water.
tensa zangetsu [6.8K]

Answer:

The latent heat of vaporization of water is 2.4 kJ/g

Explanation:

The given readings are;

The first (mass) balance reading (of the water) in grams, m₁ = 581 g

The second (mass) balance reading (of the water) in grams, m₂ = 526 g

The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ

The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ

The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature

Based on the measurements, we have;

The latent heat of vaporization = ΔQ/Δm

∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g

The latent heat of vaporization of water = 2.4 kJ/g

6 0
3 years ago
Other questions:
  • A 0.60-kg object is suspended from the ceiling at the end of a 2.0-m string. When pulled to the side and released, it has a spee
    8·1 answer
  • Does air pressure increase or decrease with an increase in altitude is the rate of change constant
    6·1 answer
  • Which of the following statements is true?
    15·2 answers
  • A Young'sdouble-slit interference experiment is performed with monochromatic light. The separation between the slits is 0.44 mm.
    10·1 answer
  • If you mass 35kg on earth what will your mass be on the moon where gravity is 1/6 that of earths. PLZZZZ HElP NEED ASAP
    12·1 answer
  • A gas laser has a cavity length of 1/3 m and a single oscillation frequency of 9.0 x 1014 Hz. What is the cavity mode number?
    13·1 answer
  • How is the average American diet affected by our current food system?"
    6·1 answer
  • I NEED HELP PLEASE, THANKS! :)
    13·1 answer
  • A stationary mass of 50 kg experiences a force of 30 N. What is the
    5·1 answer
  • What is the velocity of a wave that has a frequency of 400Hz and a wavelength of 0.5 meters
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!