Answer:
jajjsjsjddjdjdjdjdjjdjeieiririitofodoslwnridooskemridisoskswkwjj jwjwiwiwiwkiwiw
Answer:
V₁ = 96.2 mL
Explanation:
Given data:
Initial volume of NH₄OH required = ?
Initial molarity = 15.6 M
Final molarity = 3.00 M
Final volume = 500.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of NH₄OH
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
15.6 M ×V₁ = 3.00 M×500.0 mL
15.6 M ×V₁ = 1500 M.mL
V₁ = 1500 M.mL /15.6 M
V₁ = 96.2 mL
Answer:
second order
Explanation:
units of reaction and their order.
Zero order --> M^1 s^-1 = M/s
First order --> M^0 s^-1 = 1/s
Second order --> M^-1 s^-1 = L/mol s
In the question rate constant k = 4.65 L mol-1s-1. = 4.65 L/mol s
Hence, the reaction is a second order reaction
Answer:
Cu(NO3)2(aq)+Pb(s) ⇌ Pb(NO3)2(aq)+Cu(s)
Explanation:
If we look at the both reactions closely, we will quickly discover that the reaction CuSO4(aq)+Pb(s) ⇌ PbSO4(s)+Cu(s) involves PbSO4.
The compound PbSO4 is insoluble in water and sinks to the bottom of the reaction vessel. When this occurs, the concentration of Pb^2+ becomes low. This will bring about a low voltage in the cell.
On the other hand, Pb(NO3)2 is soluble in water hence the cell voltage in this case is higher than the former.