Answer:
a) 0.3
b) 3.6 mm
Explanation:
Given
Length of the pads, l = 200 mm = 0.2 m
Width of the pads, b = 150 mm = 0.15 m
Thickness of the pads, t = 12 mm = 0.012 m
Force on the rubber, P = 15 kN
Shear modulus on the rubber, G = 830 GPa
The average shear strain can be gotten by
τ(average) = (P/2) / bl
τ(average) = (15/2) / (0.15 * 0.2)
τ(average) = 7.5 / 0.03
τ(average) = 250 kPa
γ(average) = τ(average) / G
γ(average) = 250 kPa / 830 kPa
γ(average) = 0.3
horizontal displacement,
δ = γ(average) * t
δ = 0.3 * 12
δ = 3.6 mm
Explanation:
Because manufacturing has so many substantial links with so many other sectors throughout the economy, its output stimulates more economic activity across society than any other sector. That's a major reason manufacturers play such a critical role in growth.
Answer: 3/2mg
Explanation:
Express the moment equation about point B
MB = (M K)B
-mg cosθ (L/6) = m[α(L/6)](L/6) – (1/12mL^2 )α
α = 3g/2L cosθ
express the force equation along n and t axes.
Ft = m (aG)t
mg cosθ – Bt = m [(3g/2L cos) (L/6)]
Bt = ¾ mg cosθ
Fn = m (aG)n
Bn -mgsinθ = m[ω^2 (L/6)]
Bn =1/6 mω^2 L + mgsinθ
Calculate the angular velocity of the rod
ω = √(3g/L sinθ)
when θ = 90°, calculate the values of Bt and Bn
Bt =3/4 mg cos90°
= 0
Bn =1/6m (3g/L)(L) + mg sin (9o°)
= 3/2mg
Hence, the reactive force at A is,
FA = √(02 +(3/2mg)^2
= 3/2 mg
The magnitude of the reactive force exerted on it by pin B when θ = 90° is 3/2mg
I had this question a lot. But The Answer is Electromechanical:)